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Abstract 

A convenient method for the description of orienta- 
tion data for cubic, hexagonal, tetragonai and ortho- 
rhombic crystals is given. The method can also be 
used for the representation of disorientation data, 
where disorientations between any two crystals of the 
specified symmetry lattices are considered. It is based 
on the quaternion formalism introduced into the dis- 
cussion of orientations and disorientations by Grim- 
mer [Acta Cryst. (1974), A30, 685-688], Frank 
[(1987). Proc. Int. Conf. on Texture of Materials 8 
(INCOTOM 8), Santa F6, USA, pp. 3-13] and others. 
Since orientations and disorientations can be inter- 
preted as rotations which in turn can be represented 
by only three parameters a vector description is used. 
These vectors span a rotation space corresponding to 
the usual space of Eulerian angles. It is called 
Rodrigues vector space [Rodrigues (1840). J. Math. 
Pure Appl. 5, 380-440; Becker & Panchanadeeswaran 
(1989). Text. Microstruct. 10, 167]. The direction of 
a Rodrigues vector is parallel to the rotation axis and 
its length is tan (0/2), where 0 describes the rotation 
angle. A method for selecting a unique representative 
out of the numerous symmetrically equivalent 
Rodrigues vectors is given. Since these selection rules 
depend on the symmetry of the crystal lattices con- 
sidered they yield compact domains in the Rodrigues 
vector space which are typical for each type of lattice 
or lattice pair. These domains are always bounded 
by planes. Frank (1987) called them fundamental 
zones and described them for the orientations of 
cubic, hexagonal and orthorhombic crystals. 

I. Introduction 

Since orientations and disorientations can be inter- 
preted as rotations the representation of (dis)orienta- 
tions is closely related to the representation of rota- 
tions. One of the most widely used methods is that 
of the three Eulerian angles ~ol, ~o2 and ~, but there 
are two major disadvantages: 

1. Each orientation is represented by three points 
in the usual Eulerian angle space (EAS). A unique 
representation would only be possible in a subspace 
having curved boundaries. 

2. There is a degeneracy of the invariant volume 
element at • = 0. All points ~ol + ~o2 = constant, qb = 0 

0108-7673/91 / 060780-10503.00 

represent the same orientation. Some papers have 
dealt with avoiding this degeneracy by various 
modifications of the Euler representation [see for 
example Helmig, Matthies & Vinci (1988); Bunge 
(1988); Matthies, Helmig & Kunze (1990)]. 

Among the other methods of representing orienta- 
tion data the vector description due to Rodrigues 
(1840) seems to be the most favourable one. The 
advantages of this method are discussed in detail by 
Frank (1987) and Neumann (1990). Since this vector 
method yields a convenient and unique description 
of orientations and disorientations we decided to 
adopt it for the representation of (dis)orientation data 
of cubic, hexagonal, tetragonal and orthorhombic 
crystals. Gertsman (1989) used these vectors for cal- 
culating the coincidence disorientations of cubic, 
hexagonal and tetragonal crystals, but without refer- 
ring to their fundamental meaning in the representa- 
tion of (dis)orientation data. 

Since lattice symmetry allows the description of an 
(a dis)orientation in many different ways a procedure 
is formulated in this paper for obtaining a unique 
representative out of the symmetrically equivalent 
vectors. This procedure is correlated to the quaternion 
formalism [see for example DuVal (1964)] which was 
first used by Grimmer (1974) for the description of 
disorientations of cubic crystals. The restrictions 
leading to a unique representative can be interpreted 
geometrically as planes bounding a compact volume 
in the Rodrigues vector space. These domains corre- 
spond to the commonly used volume in the space of 
Eulerian angles. Since the restrictions used in our 
formalism are characteristic for the symmetry ele- 
ments of the point group in question, a special cell 
can be found for every point group or combination 
of point groups, respectively. Bonnet (1980) was the 
first to formulate these characteristic restrictions for 
the disorientations of cubic, hexagonal, tetragonal 
and orthorhombic crystal symmetry. On the other 
hand, in this paper he neither mentioned their 
geometrical meaning nor that they are valid for 
orientations as well. 

2. Definition of orientations and disorientations 

In order to define the orientation of an object, an 
orthonormal and right-handed frame is attached to 
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it. Then the orientat ion can be described in terms of 
the coordinate t ransformat ion that t ransforms the 
axes of the object frame onto those of a second, 
external,  or thonormal  and r ight-handed reference 
frame (RF). Since or thonormal  frames are chosen 
this t ransformat ion is a rotation, so the orienta- 
tion can be represented by the appropriate  rotation 
matrix D~. 

In the case of  a single crystal the object in question 
is the Bravais lattice. For cubic crystals the axes of  
the or thonormal  frame attached to the Bravais cell 
(crystal frame, CF) are chosen to be parallel  to the 
edges of the cube. For a hexagonal ,  tetragonal or 
or thorhombic  lattice the first axis of  the CF is parallel  
to the a axis and the third axis is parallel  to the c 
axis of  the Bravais cell. Obviously,  the specification 
of  the matrix D~ is not yet unique since a number  of 
symmetr ical ly  equivalent  CF  are possible. The corre- 
sponding rotation matrices are 

Di : DISi ,  i = l , . . . , n ;  S I = E ,  (1) 

where Si describes one of  the n symmetry operations 
belonging to the crystal class in question. From these 
n symmetr ical ly  equivalent  rotations D~ the one which 
has the smallest  rotation angle is chosen as the rep- 
resentative for describing the orientation. It should 
be emphas ized  that this convention has no physical  
relevance at all. Mathemat ica l ly  it is the simplest  way 
to obtain a unique description of an orientation. On 
the other hand,  this convention leads to the most 
useful way of  describing orientat ion data. 

The definit ion of a disorientat ion between two 
objects can now be formulated analogously.  If there 
are frames at tached to the two objects then the trans- 
formation of one of the frames onto the other can be 
taken as a description of  the disorientation. In the 
case of crystals, this method again does not provide 
a unique representative. This time there are n x m 
matrices that are symmetr ical ly  equivalent,  namely 

D~j=STD~S~', i = l , . . . , n ,  j = l , . . . , m ,  

S =E=S  ' (2) 

where S '~ runs through the n symmetries of  the first 
crystal, named  A, and S b runs through the m sym- 
metries of  crystal B. If  crystals of  the same crystal 
structure are considered it is physical ly not relevant 
whether the lattice of crystal A is mapped  onto that 
of  crystal B or vice versa. As a result inverse rotations 
D -~ are al lowed this t ime too and the number  of 
equivalent  rotations doubles  to 2n x m. That is true 
for example  in the case of  an investigation of  grain 
boundar ies  in a s ingle-phase alloy. If phase boun- 
daries in a mul t iphase  alloy are investigated it must 
be dist inguished whether  the considered rotation 
transforms the lattice of  crystal A onto that of  crystal 
B or vice versa. So we decided to adopt the following 
convention. If disorientat ions between non-identical  

crystal structures are considered then the unique rep- 
resentative should be taken from those rotations that 
t ransform the lattice with the lower symmetry onto 
that with the higher  symmetry.  

N e u m a n n  (1990) showed that a unique representa- 
tive can be selected by requiring that the rotation 
angle is as small  as possible and that the rotation axis 
is lying in the s tandard stereographic triangle of the 
lattice in question. Here the proof  will be given in 
terms of the matrix notat ion of (1) and (2), but for 
a more general case, where the m symmetries S b are 
a subgroup of  the n symmetries  S '~. 

The rotation angle 0A of  a matrix A can be found 
a s  

cos (0A) = [tr ( A ) -  1 ]/2 

where t r (A)  is the trace of  A. Any of the n x m  
matrices D 0 can be written as 

DoSTD,S~ [(S~,)-, b ,~ b = S r ]Si D~Sj 
b - 1  b a b 

= ( S  r) (S r S , ) D , S  r 

: (S~')-'(S~D,)S~' 

: (S~)-~(Dk)S~ ' .  

This equation read from left to right means  that any 
matrix D o is a member  of a class that is obtained by 
t ransforming a suitably chosen matrix Dk by one 
of the m symmetries  S b. Each class consists of  m 
elements and,  since Dk was obtained as S~,D~, there 
are in general  n such classes. Moreover,  since 
tr (AB) = t r  (BA) it follows that tr [(S~')-'DkS~'] = 
tr [S~'(S~')-'Dk] = tr (Dk), which means  that all mem- 
bers of  a single class have the same rotation angle. 
Since the upper  bound  for the rotation angle was 
already fixed by S~'D~, this upper  bound is not influ- 
enced by mul t ip lying S~Dt with S~' when S b is a 
subgroup of  S a. 

Now let D be a member  of  the class with smallest  
rotation angle and let D r be this whole class: 

Dr = 

Then the rotation axis of  any member  is d r = (S~') ~d, 
where d is the rotation axes of  D. Thus the axes of 
all D r are obtained by t ransforming one of them with 
all symmetries  S~'. Only one of these axes lies in the 
s tandard stereographic triangle related to the sym- 
metries o f S  b. Thus the group with the lower symmetry 
(less elements,  S b in our case) defines the adequate  
s tandard stereographic triangle and the group with 
higher symmetry (more elements,  S a) fixes the 
m a x i m u m  reduced rotation angle. 

Since the above discussion is independent  of  the 
explicit groups of symmetries  the ment ioned argu- 
ments hold for disorientat ions too. In this case S" = 
S b, which means  that the unique representatives have 
the same m a x i m u m  reduced rotation angle as is valid 
for orientations and their rotation axis is lying in the 
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standard stereographic triangle defined by the par- 
ticular crystal symmetry. 

3. Q u a t e r n i o n s  and Rodr igues  vectors 

As pointed out, (dis)orientations can be described as 
rotations. There is a two-to-one homomorphism 
between the group of unit quaternions and the three- 
dimensional rotation group SO(3) (van der Waerden, 
1932). A unit quaternion q is an ordered set of four 
real numbers of the following form 

3 
q =  (qo; q,; q2; q3), satisfying y. q2= 1. (3) 

i=O 

The rotation matrix belonging to +q is obtained as 

(q~ +q2_q2_q~ 2(qtq2_qoq3) 2(q, q3+qoq2) 
2(qlq2+q°q3) (q2°-q2+q~-q]) 2(q2q3-q°ql) I" 
2(qlq3_qoq2) 2(q2q3+qoql) (q~_q2_q2+q2)/ 

This can be compared to the rotation matrix that one 
obtains from a rotation axis n = (n,, n2, n3); ]nl = 1 
and a rotation angle 0 

( l _ a ) n 2 +  ! (1-a)nln2-n3b (1-a)nlna+n2b \ 
(1-a)nln2+nab (1-a)n2+a (1 a)n2n3-n,b ) 
(l-a)nln3-n2b (1-a)n2n3+n,b (1-a)n2+a / 

where a = c o s ( O )  and b = s i n ( O ) .  One can easily 
verify that 

+q -- +[cos (0/2) ;  sin (O/2)n , ;  

sin (0 /2)n2;  sin (0 /2)n3] .  

By this relation and by the multiplication rule for 
matrices one easily finds the multiplication law for 
quaternions 

qoPo- q,P, - qEP2- qaP3, 

qoPl + qlPo + q2P3 - -  qaP2, 

qP = qoP2-- qlP3 + qEPo + q3Pl, 

qoP3 + qlP2 - q2Pl + q3Po 

since q can be written as 

q = (qo; q) (4) 

(qp)o = (qoPo- qp) (5) 

(qP) = qlP + P t q + q  x P. (6) 

The quaternion description allows some insight 
into the character of rotations. From (3), a rotation 
can be interpreted as a surface point of the four- 
dimensional unit sphere S 4. The inverse of q is 
obtained by changing the sign of q. Furthermore, it 
is possible to define a distance of two rotations, q 
and p, by using the rotation angle of the interconnect- 

-1 ing rotation r = qp 
The Rodrigues vector space introduced by 

Rodrigues (1840) [see also Frank (1987) and 
Neumann (1990] is now defined by reducing the four 
components of a quaternion q to the three 

components of a Rodrigues vector d according to 

d:=(1/qo)(q,;q2;qa)=tan(O/2)n, Inl= 1, (7) 

where n is the rotation axis and 0 is the rotation angle. 
This is equivalent to a geodesic projection of S 4 onto 
R 3. The great advantage of the new method compared 
to the usual representation in the space of Eulerian 
angles is the fact that there is a one-to-one relation 
between orientations and their representation. In the 
usual Eulerian angle space this does not hold. As 
already mentioned, a single orientation is usually 
represented by three" different points in the Eulerian 
angle space, each point lying in another subspace. 
These three subspaces are equivalent to each other 
with respect to cubic symmetry. Obviously, the reason 
is that these three subspaces fit together to form a 
cube. If all cubic symmetries were used one would 
end up at one of these three subspaces only. However, 
these are not bounded by planes but by curved sur- 
faces. The other disadvantage of the Eulerian rep- 
resentation, namely the degeneration of definite 
orientations from points to lines, is avoided in the 
Rodrigues vector space method too. 

As Neuman (1990) pointed out, an ideal fibre tex- 
ture is always represented by a straight line in the 
cubic orientation space (COS) defined by the 
Rodrigues vector method. A fibre texture is described 
by a set of orientations obeying 

r ( t o )=pq( to ,  n), -~r<--to<-- ~r. 

Here p(to, n) are all rotations about a fixed rotation 
axis n with rotation angle to s [-~r, 7r] and q is an 
arbitrary orientation. These orientations are represen- 
ted by a hypercircle on S 4. Since the Rodrigues rep- 
resentation is a geodesic projection this hypercircle 
is projected onto a straight line in R 3. Moreover, for 
any type of crystal lattice, all bounding surfaces intro- 
duced by symmetries are planes in Rodrigues vector 
space. This result is again a direct consequence of 
the geodesic nature of Rodrigues vector space. 

4. O r i e n t a t i o n s  and d i sor ienta t ions  o f  cubic  crystals  

The point group describing cubic lattice is 

4 - 2  
rn3m, extended: - -  3 - -  <:> Oh 

m m 

in Sch6nflies notation 

(see Birss, 1964). This group consists of 48 symmetry 
operations which can be generated by a set of three 
matrices. A set of generators is not unique and can 
be chosen for example as 0-~, 0-7 and 0-9. These can 
be written as 

If°it (!1!)(! i/ 0 - 1 =  i ; 0 - 7 =  0 ; 0 - 9 =  0 • 

0 0 0 
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Here 0.1 is the invers ion/ ,  0.7 is a fourfold rotation 
axis parallel to [001] and 0 .9 is a threefold rotation 
axis parallel to [111]. Since 0.1 is an improper rotation 
[det (0.1) = -1 ]  one half of the elements of rn3rn are 
proper and the other half are improper rotations. As 
there is no reasonable way to define a rotation angle 
of an improper rotation these improper rotations are 
replaced by their product with 0.1. Since the resulting 
symmetries are already present among the proper 
rotations the order of the group is halved. Thus the 
point group of interest is 432 instead of rn3rn. 
That group is generated by 0.7 and 0.9. The corres- 
ponding quaternions are (21/2/2, 0, 0, 21/2/2) and 
(1/2)(1, 1, 1, 1). These quaternions can be used to 
generate all proper symmetry operations of 432 except 
of the identity (1, 0, 0, 0). With the aid of these 24 
symmetries one can easily produce the 24 cubic 
equivalent quaternions of a given quaternion q = 
(qo; ql; q2; q3) that describes the orientation of a 
cubic crystal. A unique representative of these 24 
quaternions is found by taking the one with the smal- 
lest rotation angle. The procedure of finding the cor- 
rect quaternion among the cubic equivalent ones is 
called its cubic reduction. It is described in detail by 
Grimmer (1974). The demand for the smallest rota- 
tion angle is equivalent to the condition that the first 
component of the resulting quaternion is largest. If 
this requirement is written down for all cubic 
equivalent quaternions the following inequalities are 
found: 

(2 I /2-  1)qo -> +qi, i = 1, 2, 3 

and 

qo ~ 4- q l  ± q2 4- q3.  

Here all sign changes are allowed. For the Rodrigues 
vectors this means that 

(2 I /2-  1)--> +di, i = 1, 2, 3 (8) 

1 -> +dl  + d2 + d3. (9) 

The geometrical interpretation of inequality (8) is 
as follows. The cubic reduced unique Rodrigues vec- 
tors of any cubic orientation end within a cube in the 
Rodrigues vector space. The length of its edges is 
(2 i /2 -  1). Inequality (9) means that this cube is trun- 
cated at its corners by (111)-type planes. These planes 
have a distance of 1/31/3 from the origin of the 
Rodrigues vector space. Thus the truncated cube has 
six octagonal side faces lying perpendicular to the 
fourfold axes and eight smaller triangular faces lying 
perpendicular to the threefold axes. This domain is 
called cubic orientation space. It is plotted as a stereo 
pair in Fig. 1. Since the length of a Rodrigues vector 
is correlated to the rotation angle one can easily prove 
that the maximum rotation angle necessary for the 
description of cubic orientations is 62.80 °, a result 
that was obtained by several other authors using 
different methods (Handscomb, 1958; Mackenzie, 

1958; Grimmer, 1974). That maximum rotation angle 
---1/2 belongs, for example, to the Rodrigues vector (2 - 

1, 21/2 - l, 3 - 2 × 21/2) which has a length of (23 - 16 x 
2l/2). This orientation is more commonly described 
as a 90 ° rotation about [1, l, 0]. This does not agree 
with the results of Bonnet (1980), who found a 
maximum reduced rotation angle of 62.80 ° for the 
vector (1, 1, 21/2- 1). The length of that vector is 
(5 - -2×  21/2) yielding a rotation angle 111.68 °. This 
seems to be due to a printer's error since the latter 
Rodrigues vector is printed several times in Bonnet's 
tables where it should not be found. 

In the case of cubic disorientations one has to 
consider all 2 x 242 cubic equivalent quaternions that 
can be calculated according to (2). As shown in § 2 
a unique representative can be selected from these 
by requiring that the rotation angle is as small as 
possible and that the rotation axis lies in the standard 
stereographic triangle of the cubic lattice. Thus for 
the cubic disorientations there are additional restric- 
tions describing the fact that the rotation axis is in 
the standard stereographic triangle: 

dl >-- d 2 -  d3---0. (10) 

These additional inequalities restrict the cubic dis- 
orientation space to the domain plotted in Fig. 2. For 
clearness the part of the cubic orientation space that 
lies in the first octant of Rodrigues vector space is 
plotted too. Here one can see explicitly that the 
maximum rotation angle necessary for the description 
of cubic disorientations is again 62.80 ° . 

1 z 

Fig. 1. Cubic orientation space. 

,z z 

I 
J 

Fig. 2. Cubic disorientation space. 
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Since the three-dimensional plots of the cubic 
orientation/disorientation space are difficult to evalu- 
ate quantitatively a second method of plotting the 
orientation vectors is used applying equidistant sec- 
tions through the cubic orientation or disorientation 
space. For this purpose, sections of equal thickness 
perpendicular to the d 3 axis are plotted consecutively 
together with the points contained within them. The 
cubic orientation and the cubic disorientation space 
of Figs. 1 and 2 are plotted in this manner in Figs. 3 
and 4 respectively. As already pointed out, the restric- 
tions leading to the compact domains for any point 
group or pair of point groups are always linear, in 
other words, the domains are always bounded by 
planes. Thus this sliced way of representing orienta- 
tion and disorientation data can easily be applied for 
any crystal system. 

........ " 1 
! 

\ . . . .  / 
z-- 0.322 z= 0.230 z= 0.138 

yf 

z.- 0.046 z:: 0.000 z :  -0.046 . . . . . .  J 

z= 0.138 z-: - 0.230 z=--0.322 

Fig. 3. E q u i d i s t a n t  sec t ions  p e r p e n d i c u l a r  to the d 3 axis  t h r o u g h  
the  cub ic  o r i e n t a t i o n  s p a c e  o f  Fig. 1. 

z= 0.296 

f 
z= 0.185 

z= 0.074 

/ 
z= 0.259 

z= 0.222 

4 
. /  

/ / 

/ / / ~  _ _ _  

z= 0.148 
z- 0.111 

. , 

i 
z= 0.037 

z 0.000 

Fig. 4. E q u i d i s t a n t  sec t ions  p e r p e n d i c u l a r  to the d 3 axis  t h r o u g h  
the  cub i c  d i s o r i e n t a t i o n  s p a c e  o f  Fig. 2. 

5. Orientations and disorientations of hexagonal 
closed-packed crystals 

The methods for describing cubic orientation and 
disorientation data are well developed. Especially the 
method of orientation distribution functions (ODF) 
which is due to Bunge (1982a, b, 1987) and Hansen, 
Pospiech & Liicke (1978) has widespread use in tex- 
ture analysis. For hexagonal crystals these methods 
are less elaborated. Usually the orientation data 
obtained in texture analysis are plotted as pole figures. 
Morris & Heckler (1969) were the first to plot a 
hexagonal ODF in the space of Eulerian angles. 
Haessner & Schr6der (1977) used this method for 
calculating inverse pole figures. Bunge (1982a, b) 
described the symmetry elements in the space of 
Eulerian angles that are caused by hexagonal crystal 
structure and a number of different symmetries of the 
specimen. Since all the mentioned metl~ods are more 
or less analogous to those used for cubic crystals, 
they have the same disadvantages. Moreover, there 
is no method in use, known to the authors so far, for 
plotting unique disorientation data of non-cubic crys- 
tals. Thus the Rodrigues vector space method is 
applied here to orientations and disorientations of 
hexagonal crystals. 

The point group describing a h.c.p, material is 

6 2 2  
6 /  m m m ,  extended: - -  - -  - -  ¢ : ~  D 6 h  

m m m  

in Sch6nflies notation. 

This group is spanned by the generating matrices 0.', 
0 -2 , o -3 and 0.6. These are 

o ' = / ,  = 1 , 

0 

0 - 3  = i , 0 - 6  = 

0 0 i) 
where a = ½ and b = 3'/2/2. 

0 .2 and 0 .3 are twofold rotation axes about [010] 
and [001 ] respectively. 0 -6 is a threefold rotation about 

i Z  

- .  i -"r . . . . . .  

........ . - fJ  

! .......... 
J /  

i -~; ......... i . . . . . .  ! . . . . . . . . .  
X 

Fig. 5. H e x a g o n a l  o r i e n t a t i o n  a n d  d i s o r i e n t a t i o n  space .  T h e  sol id  
c ircles  m a r k  the  in t e r sec t ion  po in t s  o f  the axes  wi th  the  s u r f a c e  
o f  the  d i s o r i e n t a t i o n  space .  
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[001]. The subgroup of proper rotations is the point 
group 622. The quaternions related to the proper 
rotations are (same order as above) (0,0, 1,0), 
(0, 0, 0, 1), (~, 0, 0, 3~/2/2). From these the twelve 
quaternions related to the proper symmetries of 
6 / m m m  can easily be calculated. Now the procedure 
is analogous to that of the cubic case. The condition 
that the unique disorientation vector corresponds to 
a quaternion with maximum first component qo yields 
the following inequalities for the Rodrigues vectors: 

1 >--Idol, i = 1, 2, 3 

1 >- +(a 4. bd3) 

1 >-" +(ad,  + bd2) 

1 ~ +(bdl  4- ad2) 

1 >-- +(b + ad3). 

Here all sign changes are allowed again. From these 
restrictions the hexagonal orientation space can be 
constructed. It is plotted in Fig. 5. It is a prism with 
a symmetric dodecagonal base and top surface. The 
side faces are squares. The height of the prism is 
h = 2(2 --31/2); i.e. ]d31 < (2 -3 ' / 2 ) .  The corners of the 
top surface lying in the first octant are 

[1, ( 2 -3 ' / 2 ) ,  ( 2 -  3'/2)], 

[(3 ' / 2 -  1), (3 ' / 2 -  1), ( 2 -  3'/2)], 

[ ( 2 -3 ' / 2 ) ,  1, (2 -3 ' /2 ) ] .  

For symmetry reasons all the other corners can be 
found easily. 

As already pointed out the longest vector lying in 
the orientation space covers the largest rotation angle 
necessary for the description of an (a dis)orientation. 
Therefore using one of the above corners it can be 
proved very easily that the maximum rotation angle 
for hexagonal crystals is 93.84 ° . 

In analogy to the cubic case, hexagonal disorienta- 
tions can be reduced to a Rodrigues vector that covers 
a minimal rotation angle and has a rotation axis lying 
in the hexagonal standard stereographic triangle. This 
yields two new restriction, namely 

O<_d2<_(1/31/2)d,, 0<_d3 . 

The resulting hexagonal disorientation space is 
plotted into the hexagonal orientation space of Fig. 5. 

6. Orientations and disorientations of tetragonal 
crystals 

The point group of the tetragonal crystal lattice is 
4 / m m m .  It is generated by the matrices o-', 0-2 and 
0-7. These have already been described in the preceed- 
ing sections. The subgroup of proper rotations is 422. 
From the related quaternions one can construct all 
eight symmetry elements of 422. With the aid of 
this quaternion the restrictions for the tetragonal 

orientation space are calculated to be 

1 >- ± ]d i [ ,  i = 1, 2,  3 

(2 ' / 2 -  1)_> +d3, 2' /2>_+dl+d2" 

Here all combinations of signs are allowed. From 
these inequalities the tetragonal orientation space can 
be constructed. It is plotted in Fig. 6. It is a prism 
with a symmetric octagonal base and a height h = 
2(2 ' / 2 -  1); i.e. [d3[-< (2 ' / 2 -  1). The corners of the top 
surface lying in the first octant are 

[ 1 , ( 2 ' / 2 - 1 ) , ( 2 ' / 2 - 1 ) ] ,  [ ( 2 1 / 2 - 1 ) , 1 , ( 2 ' / 2 - 1 ) ] .  

All other corners can be found by symmetry. Since 
the longest tetragonal reduced Rodrigues vector cor- 
responds to the largest rotation angle necessary in 
the description of tetragonal orientations one can 
easily verify that this angle is 98.42 ° . 

The tetragonal disorientation space is found by 
using additional restrictions describing the fact that 
the rotation axis should lie in the tetragonal standard 
stereographic triangle. These restrictions are 

d3->0, dl > d2 >- O. 

The tetragonal disorientation space is plotted in the 
tetragonal orientation space of Fig. 6. 

7. Orientations and disorientations of orthorhombic 
crystals 

The point group of the orthorhombic crystal lattice 
is mmm.  It is generated by o "1, 0 -2 and 0 "3. The proper 
subgroup of m m m  is 222. Using the same procedure 
as in the former sections one finds that the ortho- 
rhombic orientation space (OOS) is a cube. The 
explicit proof is easy and left to the reader. The length 
of the edges is 2, i.e. 

[d]i-< 1, i =  1,2,3. 

The orthorhombic disorientation space is just that 
part of the OOS that is lying in the first octant of the 
Rodrigues vector space. Both spaces are plotted in 
Fig. 7. 

i 

• . ~ . ,  . . . . .  

, I 

, . ¢  • i [ 

X • . .  '. . .  . 1 ,  

Fig. 6. Tetragonal orientation and disorientation space. The solid 
circles mark the intersection points of the axes with the surface 
of the disorientation space. 
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8. Disorientation between cubic and hexagonal crystals 

In the case of disorientations between different crystal 
structures a new aspect arises for the representation 
by Rodrigues vectors. 

If the point symmetry of one crystal structure is a 
subgroup of  the other then the rotation axis is in the 
standard stereographic triangle of the lattice with 
lower symmetry (less elements of the group) and the 
maximum reduced rotation angle is that belonging to 
the group with higher symmetry. The proof  was given 
in § 4. But if there is no subgroup relationship between 
the two crystal structures as in the case of cubic and 
hexagonal crystals then the standard stereographic 
triangle of  both individual crystal classes is not 
adequate for the representation and a new standard 
stereographic triangle and a new compact domain 
must be defined. But, on the other hand, since there 
are elements of S b not contained in S a and vice versa, 
the maximum reduced rotation angle must be smaller 
than those of the two individual groups. 

There are 12 x 24 = 288 symmetrically equivalent 
and proper rotations for the representation of dis- 
orientations between cubic and hexagonal crystals 
each transforming the frame connected with the 
hexagonal lattice onto that connected with the cubic 
one. Among these there are generally four different 
Rodrigues vectors covering the smallest rotation 
angle. Each of these vectors is lying in every other 
octant of the Rodrigues vector space. They can be 
transformed into each other by sole sign changes 
of  their components. Thus the compact domain 
necessary for describing the cubic-hexagonal dis- 
orientations must cover parts of at least two octants. 
For simplicity we chose the first and second octants 
which can be described by the condition d2 -> 0; d3 --- 0. 
In other words, the standard stereographic triangle 
for cubic-hexagonal disorientations is the half  circle 
between (001), (010) and (00i) of the stereographic 
standard projection. Thus the cubic-hexagonal dis- 
orientation space is restricted by only 72 out of the 
288 inequalities and only one half of these is active 
in the first octant. From inspection of the related 

Fig. 7. Orthorhombic orientation and disorientation space. 

quaternions one finds that only the following restric- 
tions are relevant in the first octant: 

(2 ~ / 2 - 1 ) q o -  qi, i = 1, 2 

qo >- 2'/z[3(3 '/z + 1)qo + 3(3 ' / 2 -  1)q3] 

qo - 3(3 ,/z + 1 )( qo + q2) + 3( 3 ,/2 _ 1 )( q, + q3) 

qo--- 3(3 '/2 + 1)(qo+ q~) +~(31/2- 1)(q2-  q3). 

For the Rodrigues vectors this yields 

(2 l/z - 1) --> di, i = 1, 2 

(2 x 2 ~/2 - 3  ~ /2-1) / (3  ~/2-1) >- d 3 

/3>_ d,  /3 ->  d 

where 

0t=(3~/2--1)/(3'/2+1), fl=(3--3'/2)/(3'/2+1). 

The restrictions relevant to the second octant are 
treated analogously. These bound a domain that 
equals the one lying in the first octant and can be 
obtained by rotating it by 90 ° about (001). Together 
with the restrictions di >-0; i = 2, 3 for the standard 
stereographic triangle this yields the domain plotted 
as a stereopair in Fig. 8. For clearness a sliced rep- 
resentation of Fig. 8 is given in Fig. 9. 

Z ~Z 

j J "  

Fig. 8. Cubic-hexagonal disorientation space. 

z= 0117 z=- 0.102 z: 0.088 

- X }  /T -  • - ~ ; /  . . . . . . . . . . .  , 

. . . . . .  I , _ . . . .  

z= 0.073 z= 0.059 z= 0.044 

/t . . . .  ! ,,'~> 
z-- 0.029 z= 0.015 z= 0.000 x 

Fig. 9. Equidistant sections perpendicular to the d 3 axis through 
the cubic-hexagonal disorientation space of Fig. 8. 
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The corners of the base polygon of the cubic- 
hexagonal disorientation space in the first octant are 

(Xo, O, 0), (Xo, x,, 0), (x2, x2, 0), 

(x,, Xo, 0), (0, Xo, 0) 

and the origin. The corners of the top polygon are 

( X o ,  O, X4)  , ( X o ,  X 6 ,  X4)  , ( X 5 ,  X o ,  X4)  , 

(0, Xo, x4), (0, O, x4) 

where 

Xo= (2 ' / 2 -  1) 

xi = ( 4 -  2 ' / 2 -  6 i /2) / (3 i /2-  1) 

x 2 =  (3 ' / 2 -  1)/2 

X 3 = (3 - 31/2)/(3 × 3 ' / 2  - -  1) 

x4 = (2 × 2'/2 _ 3'/2 _ 1 )/(3' /2 _ 1 ) 

X 5 ~ X l - -  X 4 

x6 = ( 2 ' / 2 -  3~/2-6 ' /2+  3)/(3 ' / 2 -  1). 

The longest vector within the cubic-hexagonal dis- 
orientation space is (Xo, x6, x4). The length of this 
vector yields a maximum rotation angle of 56.60 °. 

9. Disorientations between cubic and tetragonai 
crystals 

The disorientations between cubic and tetragonal 
crystals can be described by 2 4 x 8 =  192 different 
Rodrigues vectors. Among these there are generally 
eight having a minimal rotation angle. These can be 
divided into two groups. The first group fulfils the 
condition ]d~l-> ]d2] while for the second group the 
inequality [d,I <-Id21 is true. The four vectors of each 
group can be transformed into each other by definite 
sign changes of their components. For any arbitrary 
cubic-tetragonal disorientation (CTD) a reduced 
Rodrigues vector can be found in either the first or 
the second octant fulfilling the condition Id, I >-Id2].  

i 7. 

/ , \ 
/ / .  ' , \  \ 

L I I .... 

-I( 

........... y 

Fig. 10. Cubic-tetragonal disorientation space. 

Thus for the representation of cubic-tetragonal dis- 
orientations Rodrigues vectors are lying in parts of 
two octants. For simplicity the first and second octants 
are chosen again. According to the above condition 
the standard stereographic triangle for cubic- 
tetragonal disorientations can be defined as the part 
of the standard projection lying between (001), (110) 
and (170). 

The relevant restrictions derived from the demand 
for smallest rotation angle are 

(21/2 - 1 ) >- di >- O, i = 1 , 3  

d, ->ld21 

and 

1 ~ d~ ± d2 + d3. 

Thus the cubic-tetragonal disorientation space is 
constructed as shown in Fig. 10. The cubic-tetragonai 
space is just one eighth of the cubic orientation space. 
It is that part of the cubic orientation space which is 
obtained by truncating it by planes having the normal 
vectors (110), (110) and (001). Thus only one half of 
the bounding triangles and of one octagonal side face 
remains. The octagonal top face is quartered. The 
longest vector within the cubic-tetragonal disorienta- 
tion space is for example (2 '/2 - 1, 2 ' /2  -- 1,3 - 2  x 2 I / 2 )  

yielding a maximum rotation angle of 62.80 °. This 
does not agree with the results of Bonnet (1980), but 
again this seems to be due to a printer's error. 

The general considerations at the beginning of § 8 
are valid for any two lattices. Now they can be demon- 
strated explicitly by discussing the cubic-hexagonal 
and the cubic-tetragonal disorientations. If dis- 
orientations between such crystals are considered 
where the point group of the first is n o t  a subgroup 
of the second then the maximum reduced rotation 
angle is reduced compared to the rotation angles of 
the two individual crystal structures. Further, a new 
standard stereographic triangle and a new disorienta- 
tion space (compact domain) must be defined. Other- 
wise (if the first group is a subgroup of the second) 
the maximum reduced rotation angle of the group 
with the higher symmetry is valid and the standard 
stereographic triangle of the group with lower sym- 
metry can be used. The disorientation space is just 
the ruth part of the orientation space belonging to 
the group with higher symmetry. Since 6 /mmm is not 
a subgroup of m 3 m  the reduced rotation angle for 
cubic-hexagonal disorientations is 56.60 ° instead of 
62.80 or 93.84 ° which are the values of the individual 
lattices. Further, a new standard stereographic 
triangle has to be defined. The maximum reduced 
rotation angle for the cubic-tetragonal disorienta- 
tions is 62.80 ° as in the cubic case. The standard 
stereographic triangle is the cubic one and the CTD 
is an eighth of the cubic orientation space. 
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lO. Disorientations of the remaining combinations of 
any two lattices 

An analogous procedure for any remaining combina- 
tion of two out of the specified lattices yields the 
compact domains plotted in Figs. 11-14. 

1. Cubic-orthorhombic disorientation space 

Since the orthorhombic group is a subgroup of the 
tetragonal group and the order of the orthorhombic 
group is 4 this domain is just a quarter of the cubic 
disorientation space (Fig. 11). The related standard 
stereographic triangle is the orthorhombic and the 
maximum reduced rotation angle is the cubic one. 

, / .  
/ 

I 
" " j r  . . . .  - - ~  f i . . . . . . . . . . . . . . . . .  '.~-"- ...... :4 . . . . . . . . . .  71"I 

! ; I " , , j  
! .... .--~ .......... ] ....... :::.L .......... 1 _._ 
...................... :::~::.:- ..... I . . >  ~ . . . . . . . . .  

. . . . . . . . . . . . .  

Fig. 11. Cubic-orthorhornbic disorientation space. 

I z 
i 

1 -  . . . . .  i 

; ................... i : : :  .......... / :: i:.:?: ----4-4- 

~ '~ - ; .  . . . . . . .  - . L .~ - -  ~ -  zx 

It is noteworthy that the cubic-orthorhombic dis- 
orientation space is also used for describing orienta- 
tions of cubic crystals in a rolled sheet. Due to the 
fabrication process the sheet has the orthorhombic 
symmetry of the rollers. Thus for a reduction this 
sample symmetry has to be used too. In this case, 
however, one is interested in orientations and not in 
disorientations. Orientations were defined as rota- 
tions that transform the crystal frame (CF) to the 
reference frame (RF). Thus here the direction of the 
rotations is not choosable as in the case of disorienta- 
tions between non-identical lattices, where it is fixed 
by convention. 

2. Hexagonal-tetragonal disorientation space 

Since there is no subgroup relationship in this case 
a new domain had to be constructed. It is one half 
of a regular column (Fig. 12). The bottom face of the 
column has 24 corners, one of which is (1, x4, 0), 
where x4 = ( 2 x 2 ' / 2 - 3  ' / 2 -  1)/(3 ' / 2 -  1) as defined in 
§ 8. (1, 0, 0) is at the edge of the bottom. The height 
of the column is ]d13<-x4. All other corners can be 
found by symmetry. The maximum reduced rotation 
angle is 90.98 ° for (1, x4, x4). 

3. Hexagonal- and tetragonal-orthorhombic dis- 
orientation space 

Since subgroups are involved the hexagonal-  
orthorhombic disorientation space (Fig. 13) and the 
tetragonal-orthorhombic disorientation space (Fig. 
14) are just parts of the hexagonal orientation space, 
or the tetragonal orientation space respectively. 

The results of our paper are summerized in 
Table 1. 

Fig. 12. Hexagonal-tetragonal disorientation space. 

7. 

Fig. 13. Hexagonal-or thorhombic disorientation space. 

z 

/ 

Fig. 14. Tetragonal-or thorhombic disorientation space. 

11. Concluding remarks 

A unified method for representing the orientation and 
disorientation data of cubic, hexagonal, tetragonal 
and orthorhombic crystals is given for the first time. 
The method has definite advantages compared with 
those dealing with Eulerian angles, pole figures or 
inverse pole figures, especially in cases where the 
individual orientations and disorientations of large 
numbers of crystals are considered. The method can 
be applied to any type of crystal structure or pair of 
crystal structures respectively. The orientations and 
disorientations lie in compact domains always 
bounded by planes. 

We thank the Deutsche Forschungsgemeinschaft 
for financial support under contract no. Ne 193/17-1. 

The helpful cooperation of Mrs M. Feldges in 
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Table 1. Maximum reduced rotation angles, longest Rodrigues vectors, restrictions for Rodrigues vectors and 
range of rotation axes for any combination of two symmetries 

M a x i m u m  r e d u c e d  
La t t i ce  s y m m e t r i e s  r o t a t i o n  ang le  L o n g e s t  R o d r i g u e s  v e c t o r  

Cubic 62.80 (2 I/2 - l, 2 I/2 - 1,3 - 2 x 2 I/2 ) 
Hexagonal 93.84 [(3 i/2 _ 1), (3 I/2 - 1 ), (2 - 3 t/-~ )] 

Tetragonal 98.42 [ 1, (21/2 - 1 ), (2 I/2 - 1 )] 

Orthorhornbic 120 ( 1, 1, 1 ) 
Cubic-cubic 62.80 (2 I / 2 -  I, 21/2- I, 3 -  2 x 2 w2) 

Hexagonal-hexagonal  93.84 [(31/2 - 1 ), (3 t/2 - 1 ), (2 - 31/2)] 
Tetragonal-tetragonal 98-42 [ 1, (2 I/2 - 1 ), (2 I/2 - 1 )] 

Orthorhombic-or thorhombic 120 ( 1, 1, 1 ) 
Cubic-hexagonal  56.60 ( xo, x6, x4) 
Cubic-tetragonal  62.80 (21/2 - 1,2 I/2 - 1, 3 - 2 × 2 t/2) 

Cubic-or thorhombic 62.80 (2 t/2 - 1, 2 */2 - 1, 3 - 2 x 2 I/2 ) 

Hexagonal-tetragonal  90.98 ( I, x4, x4) 
Hexagonal-or thorhombic 93.84 
Tetragonal-orthorhombic 98.42 

R e s t r i c t i o n s / r a n g e  o f  r o t a t i o n  axes  

None / R ~ 
None / R 3 

None / R 3 
None / R 3 

d I>d 2:>d 3 ~ 0 / c u b i c S s T *  
d~ >- O, (l/3W2)dt -> d 2 e 0 / hexagonal SST* 

d 3 ;~ 0, d~ -> d 2 -> 0 / tetragonal SST* 
d, ~ 0, i = 1, 2, 3 / orthorhombic SST* 

see § 8 / I + 2 octant of R 3 = double orthorhombic SST* 
1/8 of c u b i c / d o u b l e d  tetragonal SST* 

1/4 of cubic-cubic / doubled orthorhombic SST* 
see § 1 0 / d o u b l e d  orthorhombic SST* 

[(31/2 - 1), (31/2 - 1), (2 -31/2)]  1/4 of hexagonal-hexagonal  / doubled orthorhombic SST* 
[ 1. (2 t/2 - 1 ), (2 I/2 - 1 )] 1/4 of tetragonal-tetragonal / doubled orthorhombic SST* 

x o = (2 t/2 - 1 ), x 4 = (2 × 2 I/2 - 3 I/2 - I )/(3 I/2 - 1 ) and x 6 = (2 ~/2 - 3 I/2 - 6 w2 + 3)/(3 ' /" - 1 ). 

* SST = standard stereographic triangle. 
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Abstract 

Dynamical calculations of reflection high-energy 
electron diffraction (RHEED) from the 2 × 1 missing 
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Os lo  3, N o r w a y .  

0 1 0 8 -  7 6 7 3  / 91 / 0 6 0 7 8 9 - 0 6 5 0 3 . 0 0  

row reconstruction of the Au( l l0 )  surface have been 
simulated as a function of surface-atom relaxation at 
different incident glancing angles using the multislice 
approach with the edge-patching method. The results 
demonstrate that the diffracted-beam intensity is 
extremely sensitive to the surface structure; small 
surface relaxations lead to large amplitude changes, 
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